The enhanced alcohol-sensing response of ultrathin WO3 nanoplates.
نویسندگان
چکیده
Chemical sensors based on semiconducting metal oxide nanocrystals are of academic and practical significance in industrial processing and environment-related applications. Novel alcohol response sensors using two-dimensional WO(3) nanoplates as active elements have been investigated in this paper. Single-crystalline WO(3) nanoplates were synthesized through a topochemical approach on the basis of intercalation chemistry (Chen et al 2008 Small 4 1813). The as-obtained WO(3) nanoplate pastes were coated on the surface of an Al(2)O(3) ceramic microtube with four Pt electrodes to measure their alcohol-sensing properties. The results show that the WO(3) nanoplate sensors are highly sensitive to alcohols (e.g., methanol, ethanol, isopropanol and butanol) at moderate operating temperatures (260-360 degrees C). For butanol, the WO(3) nanoplate sensors have a sensitivity of 31 at 2 ppm and 161 at 100 ppm, operating at 300 degrees C. For other alcohols, WO(3) nanoplate sensors also show high sensitivities: 33 for methanol at 300 ppm, 70 for ethanol at 200 ppm, and 75 for isopropanol at 200 ppm. The response and recovery times of the WO(3) nanoplate sensors are less than 15 s for all the test alcohols. A good linear relationship between the sensitivity and alcohol concentrations has been observed in the range of 2-300 ppm, whereas the WO(3) nanoparticle sensors have not shown such a linear relationship. The sensitivities of the WO(3) nanoplate sensors decrease and their response times become short when the operating temperatures increase. The enhanced alcohol-sensing performance could be attributed to the ultrathin platelike morphology, the high crystallinity and the loosely assembling structure of the WO(3) nanoplates, due to the advantages of the effective adsorption and rapid diffusion of the alcohol molecules.
منابع مشابه
A precursor route to single-crystalline WO3 nanoplates with an uneven surface and enhanced sensing properties.
A W-containing inorganic-organic nanohybrid with a plate-like morphology has been successfully prepared through a nonaqueous synthetic route using WCl(6) as the tungsten source and benzyl alcohol as the solvent. The as-prepared hybrid nanomaterial was used directly as an efficient precursor for the formation of WO(3) nanoplates via a simple thermal treatment process. The as-obtained WO(3) mater...
متن کاملEnhanced methanol sensing performance of oblique deposited WO3 thin films
Methanol (CH3OH) is a colorless liquid with a mild odor. The wide ranges of applications, toxicity and clinical implications of methanol have made necessary to develop reliable and high-performance methanol sensors. In this paper, WO3 thin films were deposited on SiO2/Si substrates by e-beam evaporation technique under normal and oblique angles and then post-annealed at 500 °C with a flow of ox...
متن کاملHydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd
Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...
متن کاملSynthesis, Humidity Sensing, Photocatalytic and Antimicrobial Properties of Thin Film Nanoporous PbWO4-WO3 Nanocomposites
A humidity sensor thin film based on nanoporous PbWO4-WO3 composites has been prepared by spin coating technique with different weight ratio of PbWO4 (Pb) and WO3 (WO) (PWWO-01, PWWO-82, PWWO-64, PWWO-46, PWWO-28, PWWO-01) and their humidity sensing properties have also been investigated at different relative humidity (RH) in the range of 5% - 98% at room temperature with dc resistance. It is f...
متن کاملIn situ synthesis of Bi2S3 sensitized WO3 nanoplate arrays with less interfacial defects and enhanced photoelectrochemical performance
In this study, Bi2S3 sensitive layer has been grown on the surface of WO3 nanoplate arrays via an in situ approach. The characterization of samples were carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and ultraviolet-visible absorption spectroscopy (UV-vis). The results show that the Bi2S3 layer is uniformly formed on the sur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 21 3 شماره
صفحات -
تاریخ انتشار 2010